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The development of ejector technology has historically been concerned
with achieving higher augmentation ratios through improved nozzle develop-
ment, better mixing and overall ejector design. Most efforts have been
successful with augmentation ratios in excess of 2.0 being achieved in the
laboratory. However, the two experimental military aircraft, the XV-4A in
the 1961-1964 time period and the XFV-12 in the 1971-1978 time period, have
been developed using ejector systems for vertical thrust; both have been
rated at best only marginally successful. In spite of the modest design
augmentation ratios, 1.41 for the XV-4A and 1.55 for the XFV-12, neither
aircraft achieved these levels. The reasons for not achieving the design
level of augmentation and the lack of success of these aircraft can largely
be attributed to the interface of the ejector with the aircraft, ejector
characteristics, and the additional requirements (other than vertical thrust
production) imposed on the ejector. The compromises required to interface
the ejector into the V/STOL aircraft result in systems losses, weight
increases, volume requirements and additional complexity. These interface
areas include the engine/ejector, ducting system, force vector control, flight
control, ground effects and VIOL translation/transition characteristics.

ENGINE/EJECTOR INTERFACE

In ejector-equipped aircraft, the engine(s) must perform the dual
function of providing primary gas to the ejector system and of providing
thrust for conventional flight. When operating in the ejector-powered mode,
the engine exhaust gases are directed into the ejector system through a
diverter valve scheme. The XV-4A incorporated a two-door block and turn
diverter and the XFV-12 a sliding sleeve arrangement. The compromises
associated with installation of the diverter valve include (fig. 1):
exhaust gas pressure losses in the order of 3%, exhaust gas leakage losses
in the order of 1%, weight increase in the order of 200 1lb (generally aft
of the C.G.). The XFV-12 diverter valve weighs approximately 400 1b.
Depending on the diverter valve scheme, a possible increase in engine tail
pipe length and to date no diverter valve has been flown that is compatible
with afterburner operation. Another engine/ejector interface is the engine
tailpipe area/ejector primary nozzle area matching. In the ejector mode,
for proper engine operation, the engine must feel an exhaust area equivalent
to the trim design tail pipe area. In the case of the XFV-12, F401 engine,
this is approximately 8.3 ft2. The ejector system must be designed and the
nozzles sized for this equivalent area. Figure 2 shows that too little
equivalent area can back pressure the engine and reduce thrust; too much
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area, depending upon the engine control system, can reduce stall margin.

The ejector system must be designed to allow matching of the engine operating
line or complications such as reduced thrust or reduced stall margin

may result.

DUCTING SYSTEM

The propulsion system is connected to the ejector through a ducting
system. The ducting system is comprised of duct runs, expansion bellows,
integral turning vanes, attachments for mounting and insulation. In addition
to being a potential source of problems ranging from intolerable internal
airframe temperatures to catastrophic loss of augmentation, the ducting
system compromises the vehicle through increased weight and large volume
requirements, and reduces primary nozzle thrust through system pressure
losses. 1In general, the ducting design parameters (i.e., temperature,
pressure and flow Mach number) are conducive to relatively large cross-
section ducts of thin gage material. Figure 3 shows some typical duct
characteristics. These in turn present areas for potential problems in
manufacturing such as duct joining, mismatch and welding difficulties
leading to stress concentrations and hot spots which can result in duct
ruptures as shown in figure 4. In addition, maintenance problems can be
encountered in handling and inspection. Typical ducting systems can add
200 to 300 1b to the vehicle weight (the XFV-12 ducting system weighs
approximately 900 1b) and exact a thrust loss, before augmentation, of
approximately 8%. Example pressure losses are shown in figure 5. The duct
pressure losses in the XFV-12 were initially estimated to be approximately
12% and the XV-4A at 10%. A rule of thumb converts 2% pressure losses
into 1% thrust loss.

FORCE VECTOR CONTROL

When operating in the vertical mode, a VTOL aircraft requires some
method of providing a horizontal thrust component for translation acceleration
to wingborne flight. In the XV-4A, the ejector nozzles were canted 12° aft
and acceleration was accomplished by assuming a nosedown attitude. Due to
the limited augmentation of the XV-4A this resulted in a bouncing leapfrog
translation until sufficient speed was obtained to eliminate all hot gas
reingestion and to develop sufficient augmentation to maintain altitude. In
the XFV-12, the horizontal thrust component is generated by rotation of
the augmentor flaps to an aft position. These schemes are shown in figure 6.
If sufficient augmentation can be achieved, such a scheme is more desirable
and comes with relatively little penalty except complexity since the augmentor
flaps are stowed in a rotated position for conventional flight. However, if
accomplished by doors or louvers, the system can be back pressured resulting
in loss of thrust and, if not efficient, can add to ram drag.
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FLIGHT CONTROL

A VTOL vehicle must incorporate supplemental control power to hover and
low-speed flight where aerodynamic controls are ineffectual. The XV-4A uti-
1ized continuous flow exhaust gas for pitch and yaw and compressor bleed air
(on demand) for roll control. The pitch/yaw system required 450-1b engine
thrust and at a 5% bleed rate the roll system extracted the equivalent of
216 1b of thrust (108 lb per valve). In addition to the extra weight and
volume, the reaction contrel system extracted a total of 666 1b of thrust
before augmentation (a 10% thrust iess). The XFV-12 utilizes a total force
management system in which the ejector provides functions of pitch, roll,
yaw, height control and force vector control. These control functions are
shown in figure 7. Such & force management system imposed on the ejector
requires that a certain amount of 1ift be retained (unusable) for control
purposes, for example, with full-up height control the system must allow for
further open modulation (additional 1ift) if a lateral or pitch control
moment is demanded. Also, such a system usually suffers from a marginal
lateral control capabiliey during transition speeds before aerodynamic con-
trol is effective. Figure 8 depigts the relationship. With the ejector
rotated aft and a lateral control moment demanded, the resultant effective
lateral control force is equal to the delta force times the cosine of the
rotational angle. 1In addition an unbalanced horizontal force equal to the
delta force times the sine of the rotational angle induees a yaw moment;
that is, as rotational angle 1s increased lateral control is reduced in
effectiveness and is coupled with yaw. This type control system requires
that either mechanical or electronic control mixing and aerodynamic/reaction
control blending for smooth transition. This adds both weight and
complexity to the vehicle,

GROUND EFFECTS

The ground effects generated by a VIOL aircraft have been proven to be
very configuration oriented. Ground effects are characterized in four forms:
hot gas reingestion into the engine, suckdown or positive 1ift, temperature
effects and ground erosion. Ejectors generally have good velocity and
temperature profiles. The mixed exhaust gas temperature at the ejector
exit approaches 300° F and the velocity is approximately 600 ft/sec. This
advantage gives good erosion characteristics and little temperature effect
on the vehicle or surrounding equipment. However, due to the large mass ot
airflow through the ejector (fig. 9), five to six times the primary engine
exhaust and the flow field around the vehicle, hot gas reingestion and suck-
down/positive 1ift effects are pronounced. Reingestion of hot gases can
cause two detrimental effects. Operation of the engine in a uniform elevated
temperature environment causes a loss of thrust equal to about 1% for 5° F
temperature rise. Both the XV-4A and the XFV-12 experienced compressor inlet
temperature increases of 25° F after short periods of operation in ground
effect. The second detrimental effect of reingestion occurs when the engine
ingests a spike of high temperature air causing compressor stall. This is a
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function of temperature rate of change and not necessarily only high temper-
ature; a 20°F temperature increase in 0.1 sec gives a 200° F/sec spike and can
cause compressor stall. Compressor stall can be catastrophic if it results
in engine flameout. Insofar as suckdown/positive lift is concerned, the
vehicle/ejector configuration is the determiner. The XFV-12 claims positive
ground effect, but testing is required to verify this claim. The XV-4A
suffered from suckdown while in a three-point landing attitude; but upon
ralsing the nose to 12° (hover attitude due to the canted ejector nozzles)
the vehicle experienced positive ground effect as shown in figure 10. 1In
any case, ground effects are clearly a design consideration for an ejector
V/STOL aircraft and can attribute greatly to lift losses. In some cases,
special provisions to increase the engine stall margin, such as upstaging
the inlet guide vanes or increasing the turbine nozzle area have been
necessary. This results in additional thrust losses before augmentation.

VTOL TRANSITION/TRANSLATION CHARACTERISTICS

For the VIOL aircraft, the transition from vertical-powered to wing-
borne flight (and vice versa) is the most demanding and critical phase of
flight. Below about 60 knots airspeed, the power-induced effects upon the
vehicle are predominant and are particularly so on the ejector vehicle
because of the large amount of secondary airflow taken through the ejector
system. The vehicle design configuration is clearly a driving factor on the
transition characteristics. A configuration such as the XFV-12 (four
poster arrangement) should exhibit good stability characteristics relative
to induced pitching and rolling moments; but the single-ejector configuration
such as the XV-4A develops severe low-speed pitch and roll characteristics
due to the ejector-induced mass flow. Figure 11 depicts the upset moments
that are induced by forward translation, sideslip or a combination of the
two. These large mass flow effects were very pronounced on the XV-4A and on
the XV-5A, fan-in-wing vehicle, which also induced large mass flows. To
obtain adequate pitch control for transition, both vehicles required special
longitudinal control design. The XV-4A required installation of a down
spring to offset the high elevator hinge moments, a 30° elevator droop
mechanism and boundary layer blowing on the elevator to prevent separation.
With these controls the angle of attack was limited to 10° to prevent pitchup.
The XV-5A required the complete horizontal tail to be positioned at =n 11°
leading~edge-up incidence angle and a nose-mounted pitch fan when operating
in the transition regime. The moments generated in sideslip required that
the XV-4A be limited to 5° and that the XV-5A limited to winds of 6 knots
while in the vertical mode of operation. In addition, the large mass of
air being turned through the ejector system causes high ram drag which limits
forward speed while operating in the vertical transition mode. This
characteristic can require special transition techniques. For example, to
achieve wingborne flight speed above stall, it was necessary for the XV-4A
to accomplish sequential diversion of the engine exhaust from the ejector
to the thrusting mode. The XV-4A transition shown in figure 12 is undesirable
from an operational standpoint. The ejector vehicle configuration should be
designed to provide for a smooth continuous transition and conversion, however
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the requirements of transition and conversion add weight and complexity to
the ejector V/STOL aircraft.

SUMMARY

A number of areas have been identified which have in the past contrib-
uted to weight, complexity, and thrust losses in the ejector-powered V/STOL
vehicle. A summary of the area is shown in figure 13. Most of these inter-
faces taken singly do not represent a severe compromise to the vehicle; how-
ever, the bottom line is that the sum of compromises and the subsequent
effects on performance, flight operations and maintenance have rendered the
ejector V/STOL aircraft unattractive. In addition to some of the unique
ejector/aircraft integration problems, the vehicle by virtue of having a
V/STOL capability is compromised in other areas such as inlets for low
speed (blow-in doors, sliding inlets, auxiliary inlets, rounded 1lips) and
high speed compatibility, zero-zero/bad attitude ejection capability, addi-
tional controls and displays, stability augmentation, and weapons compati-
bility. To be successful and acceptable, the advantages must outweigh the
disadvantages and simplicity with minimum penalties must be the rule.

Figure 14 lists the advantages and disadvantages of the V/STOL ejector-
aircraft. It is clear that more emphasis must be placed on the ejector/
aircraft interface for the concept to be successful.
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Figure 4.- Example of rupture due to hot spot.
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